Neutrino and Dark Radiation Bounds from Cosmology

Creziano Rossi Department of Physics and Astronomy Sejong University – Seoul, Korea

with N. Palanque-Delabrouille, C. Yèche, J. Lesgourgues

7th KIAS Workshop on Cosmology and Structure Formation KIAS, Seoul, November 3, 2016

(D) (A) (A)

MAJOR RESULTS

Individual constraints on $\sum m_{\nu}$ (95% CL)

 $\sum \mathbf{m}_{\nu} < \mathbf{0.12 eV} \rightarrow \text{CMB} + \text{Lyman-}\alpha + \text{BAO}$

JOINT CONSTRAINTS ON N_{eff} and $\sum m_{\nu}$ (95% CL)

 $N_{\rm eff} = 2.88^{+0.20}_{-0.20}$ & $\sum m_{\nu} < 0.14 \text{ eV} \rightarrow \text{CMB} + \text{Lyman-}\alpha + \text{BAO}$

BOUNDS ON PURE DARK MATTER PARTICLES (95% CL)

 $m_X \gtrsim 4.35 \; \mathrm{keV} \; \& \; m_s \gtrsim 31.7 \; \mathrm{keV}$

- **1.** Results on $\sum m_{\nu}$ tend to favor the *normal hierarchy scenario* for the masses of the active neutrino species \rightarrow strongest upper bound
- 2. Sterile neutrino thermalized with active neutrinos ruled out at more than 5σ and $N_{\rm eff} = 0$ rejected at more than $14\sigma \rightarrow$ robust evidence for the CNB from $N_{\rm eff} \sim 3$

OUTLINE

1. Introduction

Neutrino Science

2. Cosmology with Massive Neutrinos

- Simulations and Datasets
- Neutrino Mass Constraints
- Dark Radiation Constraints

3. Synergies & Prospects

- Synergies with Particle Physics
- Future Prospects

MAIN REFERENCES

・ロン ・四 ・ ・ ヨン ・ ヨン

3

- Baur et al. (2016), JCAP, 8, 012
- Rossi et al. (2015), PRD, 92, 063505
- Palanque-Delabrouille et al. (2015a), JCAP, 11, 011
- Palanque-Delabrouille et al. (2015b), JCAP, 2, 045
- Rossi et al. (2014), A&A, 567, A79

NEUTRINOS: FORMALISM

- ν_{α} ($\alpha = e, \mu, \tau$) \rightarrow neutrino flavor eigenstates
- $\nu_i \ (i = 1, 2, 3) \rightarrow$ neutrino mass eigenstates
- $m_i (i = 1, 2, 3) \rightarrow neutrino individual masses$

•
$$m_2 > m_1, m_2 \simeq m_1$$

- $\Delta m_{21}^2 \equiv \delta m^2 = m_2^2 m_1^2 > 0 \rightarrow \text{solar mass splitting}$
- $|\Delta m^2_{31}|\equiv |\Delta m^2|=|m^2_3-m^2_1|
 ightarrow$ atmospheric mass splitting
- $\Delta m_{31}^2 > 0 \rightarrow$ normal hierarchy (NH)
- $\Delta m_{31}^2 < 0 \rightarrow$ inverted hierarchy (IH)
- Relation flavor-mass eigenstates \rightarrow

$$|
u_{lpha}> = \sum_{\mathrm{i}} U_{lpha\mathrm{i}} |
u_{\mathrm{i}}>$$

• $U_{\alpha i} \rightarrow \text{mixing matrix, elements parameterized by } (\theta_{12}, \theta_{23}, \theta_{13}, \delta, \alpha_1, \alpha_2)$

MASSIVE NEUTRINOS: WHY SHOULD WE CARE?

- Solar, atmospheric \rightarrow cannot obtain absolute mass scale of neutrinos
- Fixing **absolute mass scale of neutrinos** → main target of terrestrial experiments
- Oscillation experiments \rightarrow tight lower bounds on total neutrino mass $(\sum m_{\nu} > 0.05 \text{ eV})$
- Cosmology \rightarrow more competitive upper bounds on total neutrino mass ($\sum m_{\nu} < 0.15 \text{ eV}$)
- Neutrino mass scale important for Standard Model → leptogenesis, baryogenesis, right-handed neutrino sector + cosmological implications

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

ABSOLUTE NEUTRINO MASS

PROBING THE NEUTRINO MASS SCALE

- 1. Direct measurements through β decay kinematics
- 2. Neutrinoless double β decay (0 ν 2 β)
- 3. Cosmological observations

1 Direct β decay \rightarrow squared effective electron neutrino mass

$$m_{\beta}^2 = \sum_{i} |U_{ei}|^2 m_i^2$$

2 Neutrinoless double β decay ($0\nu 2\beta$) \rightarrow effective Majorana mass

$$m_{\beta\beta} = |\sum_{i} U_{ei}^2 m_i|, \quad \Phi_2 = \alpha_1, \Phi_3 = \alpha_2 - 2\delta$$

$$M_{\nu} = \sum_{i} m_{i} = m_{1} + m_{2} + m_{3}$$

▲母 → ▲ 臣 → ▲ 臣 → ▲ 日 → ● ● ●

NEUTRINO MASS HIERARCHY, CNB & N_{eff}

Neutrino mass hierarchy?

CNB, $N_{\rm eff}$, Sterile ν

- CNB generic prediction of HBB model \rightarrow relic sea of neutrinos
- 3 active relativistic relic neutrinos in standard model
- Sterile neutrinos? Number of effective neutrino species (N_{eff})?

EFFECTS OF NEUTRINO MASSES ON COSMOLOGY

COSMOLOGICAL EFFECTS

- Fix expansion rate at BBN
- Change background evolution → PS effects
- Slow down growth of structures

NEUTRINO FREE-STREAMING

- After thermal decoupling ightarrow
 u collisionless fluid
- Minimum free-steaming wavenumber knr

OBSERVABLES AND TECHNIQUES

- CMB anisotropies → PS, lensing
- LSS probes
 - Galaxy PS
 - Cluster mass function
 - Galaxy weak lensing
 - Ly-α forest
 - 21-cm surveys

Linear matter power spectra (ratios) with 3 degenerate species of massive neutrinos

(日) (四) (正) (日) (日)

Э

GENERAL STRATEGY

(日) (同) (E) (E) (E) (E)

SIMULATIONS WITH MASSIVE NEUTRINOS

A suite of 48 hydrodynamical simulations with massive neutrinos

- Typical set (3 sims.) \rightarrow (a) 100 h^{-1} Mpc/768³, (b) 25 h^{-1} Mpc/768³, (c) 25 h^{-1} Mpc/192³
- With splicing technique \rightarrow equivalent of 100 h^{-1} Mpc/3072³
- 2 groups. Full snapshots at a given redshift (z = 4.6 2.2, Δz = 0.2)
- 100,000 quasar sightlines per redshift interval per simulation

POWER SPECTRUM STATISTICS

۲

Ly α Likelihood construction

- Model *M* defined by three categories of parameters cosmological (α), astrophysical (β), nuisance (γ) globally indicated with Θ = (α, β, γ)
- N_k × N_z dataset X of power spectra P(k_i, z_j) measured in N_k bins in k and N_z bins in redshift with experimental Gaussian errors σ_{i,j}, with σ = {σ_{i,j}}, i = 1, N_k and j = 1, N_z

$$\mathcal{L}^{Lylpha}(\pmb{X},\pmb{\sigma}|\pmb{\Theta}) = rac{\exp[-(\Delta^{ ext{T}}\mathcal{C}^{-1}\Delta)/2]}{(2\pi)^{rac{N_kN_z}{2}}\sqrt{|\mathcal{C}|}} \ \mathcal{L}^{Lylpha}_{ ext{prior}}(\gamma)$$

- Δ is a $N_k \times N_z$ matrix with elements $\Delta(k_i, z_j) = P(k_i, z_j) P^{\text{th}}(k_i, z_j)$
- *P*th(*k*_i, *z*_j) predicted theoretical value of the power spectrum for the bin *k*_i and redshift *z*_j given the parameters (*α*, *β*) and computed from simulations
- C is the sum of the data and simulation covariance matrices
- $\mathcal{L}_{\text{prior}}^{Ly\alpha}(\gamma)$ accounts for the nuisance parameters, a subset of the parameters Θ

DATASETS

- 1D Ly α forest flux power spectrum from DR9 BOSS quasar data
- BAO scale in the clustering of galaxies from the BOSS DR11
- Planck (2013) temperature data from March 2013 public release (both high and low-*l*)
- Planck (2015) temperature data from January 2015 public release (TT+TE+EE+lowP)
- High-*l* public likelihoods from the Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT)
- Some low-ℓ WMAP polarization data

Palanque-Delabrouille et al. (2013)

ANALYSIS TECHNIQUES

ANALYSIS STRATEGIES

- Bayesian Approach
- Frequentist Approach

FREQUENTIST APPROACH: INSIGHTS

- Minimize $\chi^2(\mathbf{X}, \boldsymbol{\sigma}|\boldsymbol{\Theta}) = -2\ln[\mathcal{L}(\mathbf{X}, \boldsymbol{\sigma}|\boldsymbol{\Theta})]$
- Compute the global minimum χ_0^2 , leaving all the *N* cosmological parameters free
- Set confidence levels (CL) on a chosen parameter α_i by performing the minimization for a series of fixed values of α_i – thus with N – 1 degrees of freedom
- Difference between $\chi^2_{\rm 0}$ and the new minimum allows us to compute the CL on α_i

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

BOSS Applications \rightarrow LyA alone

Palanque-Delabrouille et al. (2015a)

イロン イヨン イヨン イヨン

E

BOSS Applications \rightarrow Combinations

Palanque-Delabrouille et al. (2015a)

Key is orthogonality of LyA forest with other LSS probes $\sum m_{\nu} < 0.14 \text{ eV} \rightarrow \text{CMB} + \text{Lyman-}\alpha + \text{BAO}$

COMBINATIONS WITH BAYESIAN TECHNIQUES

THE POWER OF COMBINING PROBES

Palanque-Delabrouille et al. (2015b)

 $\sum m_{
u} <$ 0.12 eV ightarrow CMB + Lyman-lpha + BAO

ヘロン ヘヨン ヘヨン ヘヨン

E.

TRICK \rightarrow Analytic Proxy for Ly α Likelihood

- Technique of Palanque-Delabrouille et al. (2015) extended with analytic proxy for dark radiation models in Ly α likelihood
- Trick → If two models have same linear matter PS → nearly identical NL matter and flux PS
- Simulations with non-standard N_{eff} to confirm analytic proxy

Rossi et al. (2015)

NEUTRINOS & COSMOLOGY

FINAL JOINT CONSTRAINTS

Rossi et al. (2015)

• $N_{
m eff} = 2.91^{+0.21}_{-0.22}$ and $\sum m_{\nu} < 0.15$ eV (all at 95% CL) \rightarrow CMB + Lyman- α

IMPLICATIONS FOR PARTICLE PHYSICS

Palanque-Delabrouille et al. (2015a)

 $\sum m_{\nu} < 0.15 \text{ eV} \rightarrow m_{\beta} < 0.04 \text{ eV} \rightarrow \text{If KATRIN detects } m_{\beta} > 0.2 \text{ eV}$ the 3-neutrino model is in trouble!

(日) (同) (E) (E) (E) (E)

MORE IMPLICATIONS

- Potential relevance of our neutrino bounds on neutrinoless double beta decay (see *Dell'Oro et al. 2015*)
- Crucial impact, because the possibility of detecting a signal will be out of the reach of the next generation of experiments

SDSS DR12 & NEUTRINOS

SDSS DR12 'CONSENSUS PAPER'

• Alam et al. (2016) $\to \sum m_{\nu} \le 0.16 \text{ eV}$ (95%)

SDSS DR12 'SUPPORTING PAPERS'

• Pellejero-Ibanez et al. (2016) $\rightarrow \sum m_{\nu} \le$ 0.22 eV (95%) with 'double-probe' method

FUTURE CONSTRAINTS

eBOSS → Zhao et al. (2016) forecasts → σ(∑m_ν) = 0.03 eV (68%) with combination of probes

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

FUTURE SURVEYS: DESI

DESI Collaboration I (arXiv:1611.00036)

DESI

- Dark Energy Spectroscopic Instrument
- Massively multiplexed fiber-fed spectrograph
- On the Mayall telescope, USA
- Spectra and redshifts for 18 million ELGs, 4 million LRGs, 3 million QSOs
- Probes the effects of dark energy on the expansion history
- Targets: BAO, RSD, neutrino masses, modified gravity, inflation
- 1% level measurements of the distance scale in 35 redshift bins

DESI will measure the sum of neutrino masses with an uncertainty of 0.020 eV (for $k_{max} < 0.2$ h Mpc⁻¹), sufficient to make the first direct detection of the sum of the neutrino masses at 3σ significance and rule out the the inverted mass hierarchy at 99% CL, if the hierarchy is normal and the masses are minimal